If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x=2
We move all terms to the left:
-16x^2+64x-(2)=0
a = -16; b = 64; c = -2;
Δ = b2-4ac
Δ = 642-4·(-16)·(-2)
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{62}}{2*-16}=\frac{-64-8\sqrt{62}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{62}}{2*-16}=\frac{-64+8\sqrt{62}}{-32} $
| 44x-44=-11+33x | | 3/8c−2=3/2c−12 | | x2-10x=119 | | -4x+84=8x | | -21=-7-7(2+8n) | | 4x/3-x=x/15-12/15 | | 1/2x(3x+x)=70 | | 45-6x=10x-7 | | 2÷5x-1÷5x=9 | | 8x-6x+9=6x-x | | 5/2x-1/2=6 | | 5b+2(b-2)=3 | | -8x+5=19x+13 | | 5(4x-7)(7x+2)=0 | | y^2+2y=3y^2 | | -14x-13=-20x-18 | | 1/2(x+1)+1/4=2/3-1/6x+3/4 | | 6.7x=5.2x+12.36.7x=5.2x+12.3 | | 14.3x-6=5.2x-1 | | 2(x+1)+x=5 | | -4.905t^2-24t+13=0 | | 7/2x+9=9/4 | | 35+4x=7x-4(5-2x) | | 700=x^2+60x | | -5x-3/7=2 | | 5x/2-7+2x-7/6=0 | | 3-n+15-9=60 | | 35+4x=7x-4(5-2) | | -106-8x=-3x+54 | | 0.2w+16=40 | | (4x+3)/5-(x-3)/2=6 | | 3n-n/2=60 |